A degree bound for codimension two lattice ideals
نویسندگان
چکیده
منابع مشابه
Syzygies of Codimension 2 Lattice Ideals
The study of semigroup algebras has a long tradition in commutative algebra. Presentation ideals of semigroup algebras are called toric ideals, in reference to their prominent role in geometry. In this paper we consider the more general class of lattice ideals. Fix a polynomial ring S = k[x1, . . . , xn] over a field k and identify monomials x in S with vectors a ∈ N. Let L be any sublattice of...
متن کاملEMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS
We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. For this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ forfixed $r , sin [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...
متن کاملOn the Rees Algebra of Certain Codimension Two Perfect Ideals
The Rees algebra of an ideal is a classical object that has been studied throughout many decades. Our interest to Rees algebras comes from the fact that they provide the algebraic realizations for certain class of rational n-folds, namely those obtained from P by blowing up at a subscheme. In this paper, we study the Rees algebras of certain codimension two perfect ideals. To be more precise, w...
متن کاملDegree and Algebraic Properties of Lattice and Matrix Ideals
We study the degree of nonhomogeneous lattice ideals over arbitrary fields, and give formulas to compute the degree in terms of the torsion of certain factor groups of Zs and in terms of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over an arbitrary field using the Eisenbud–Sturmfels theory of binomial ideals over algebraically closed fields. We ...
متن کاملembedding of the lattice of ideals of a ring into its lattice of fuzzy ideals
we show that the lattice of all ideals of a ring $r$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. for this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (a)$ of a subset $a$ of a ring $r$ forfixed $r , sin [0,1] $ and show that $a$ is an ideal of $r$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2003
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(02)00324-9